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Abstract

In designing finite horizon discrete time HN controllers, the associated HN-Riccati difference equations
must be solved. But the Riccati equation has a non-negative solution only when g�2 is small enough. So it is
important to get the upper bound of the parameter, i.e., the critical value that ensures the existence of the
solution to the Riccati equation. The solution sequence of the Riccati difference equation can be
constructed by the conjoined basis of an associated linear Hamiltonian difference system. Based on this
expression and the Hamiltonian difference system eigenvalue theorems, the equivalence between the critical
value and the first order eigenvalue of the linear Hamiltonian difference system is presented. Since the
critical value is also shown to be the fundamental eigenvalue of a generalized Rayleigh quotient, an
extended form of Wittrick–Williams algorithm is presented to search this value.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The existence of a full information discrete time HN controller depends on the existence of a
non-negative solution to the associated Riccati difference equation and a matrix inequality [1].
Similar to Riccati differential equations of continuous time HN control and filtering problems,
the Riccati difference equation has a non-negative solution only for a small enough parameter g�2:
Therefore it is important to determine the upper bound of g�2; namely the critical value g�2cr ; which
ensures the existence of solutions of the Riccati difference equation. According to eigenvalue
theorems of discrete linear Hamiltonian systems [2], the solution of the Riccati difference equation
tends to infinity at the initial point when g�2 is the fundamental eigenvalue of the Hamiltonian
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difference system. Which indicates that the fundamental eigenvalue g�21 equals to g�2cr : It is also
presented in the paper that g�2cr is equivalent to the fundamental eigenvalue of a generalized matrix
eigenvalue problem. The argument is based on the concept of the generalized Rayleigh quotient
with two kinds of variables and the discrete Legendre transformation.
For continuous time HN control systems, on the basis of the correspondence between g�2cr and

the fundamental eigenvalue of a generalized Rayleigh quotient, the extended form of Wittrick–
Williams (W–W) algorithm [3] is proposed to calculate g�2cr [4]. The W–W algorithm is derived in
Ref. [5] based on the Rayleigh quotient and used in structural mechanics, then a mathematical
proof of this algorithm is presented in Ref. [6]. To overcome numerical ill-conditioning in
computation, the extended W–W algorithm is proposed in Ref. [3] based on the analogy between
structural mechanics and LQ control [7]. In this paper, another version of the extended algorithm
is presented for the critical value computation of the HN difference Riccati equations.
Section 2 briefly describes the full information discrete time HN control problem and the

associated Riccati difference equation according to Refs. [1,8]. Section 3 presents the relationship
of the critical value g�2cr ; the first order eigenvalue of the Hamiltonian difference system and the
generalized Rayleigh quotient. With the discrete Legendre transformation, an equivalent
generalized matrix eigenvalue problem is also presented for the purpose of deriving the extended
W–W algorithm. And the algorithm is formulated in Section 4. Section 5 summarizes the
computational results of numerical examples.

2. Riccati difference equation of discrete HN control

Consider the following linear discrete time system:

xkþ1 ¼ Akxk þ Bkuk þDkwk; x0 ¼ 0; ð2:1Þ

zk ¼ Hkxk þ Skuk; ð2:2Þ

where kA½0;N � 1�; state vector xkARn; disturbance vector wkARl ; control vector ukARm; output
vector zkARp: Ak; Bk; Dk; Hk and Sk are matrices with appropriate dimensions. It is also assumed
that STk ½Hk Sk� ¼ ½0 I�; HT

kHk ¼ Qk: The object of HN control is to find a control strategy fukg in
the square summable space L2½0;N � 1� such that

1

2

XN�1

k¼0

zTk zk þ
1

2
xTNQf xNo

1

2
g2

XN�1

k¼0

wTkwk; ð2:3Þ

where wAL2½0;N � 1�; g > 0; Qf is a symmetric positive-definite matrix. The feedback control
law is

uk ¼ Kxk ð2:4Þ

in which K is the feedback gain matrix. A solution to the problem was given by Basar and
Bernhard [1], Yaesh and Shaked [8,9] as follows.
There exists a unique feedback controller that guarantees (2.4) if and only if the condition

g2I�DT
kMkþ1Dk > 0; kA½0;N � 1� ð2:5Þ
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holds, where the non-negative definite matrices sequence Mkþ1 is generated by the Riccati
difference equation

Mk ¼ Qk þ A
T
kMkþ1½Iþ ðBkB

T
k � g�2DkD

T
k ÞMkþ1��1Ak; MN ¼ Qf : ð2:6Þ

The state feedback control law and the disturbance are given by

uk ¼ �BTkMkþ1Z
�1
k Akxk; ð2:7aÞ

wk ¼ g�2DT
kMkþ1Z

�1
k Akxk; ð2:7bÞ

where

Zk ¼ Iþ ðBkB
T
k � g�2DkD

T
k ÞMkþ1: ð2:8Þ

Since Eq. (2.6) has a solution on finite horizon ½0;N � 1� only when g�2 is small enough, it is
important to determine the upper bound g�2cr of g�2 first.
The results of the time-invariant system control are similar, except that system matrices Ak; Bk;

Dk; Hk and Sk are time invariant as shown in the following system:

xkþ1 ¼ Axk þ Buk þDwk; ð2:9Þ

zk ¼ Hxk þ Suk: ð2:10Þ

There exists a feedback controller if and only if the condition

g2I�DTMkþ1D > 0 ð2:11Þ

holds, where Mkþ1 is the solution of the Riccati recurrence equation

Mk ¼ Qþ ATMkþ1½Iþ ðBBT � g�2DDTÞMkþ1��1A; MN ¼ Qf ð2:12Þ

in whichQ ¼ HTH: The results can also be extended to infinite horizon case, that the controller of
an infinite horizon HN control problem exists if and only if

g2I�DTMD > 0; ð2:13Þ

where M is the solution of the algebraic Riccati equation

M ¼ Qþ ATM½Iþ ðBBT � g�2DDTÞM��1A: ð2:14Þ

3. Critical value of the HN-Riccati difference equation

3.1. Critical value and Hamiltonian difference system eigenvalue

The solution sequence of the Riccati difference equation (2.6) can also be constructed by the
conjoined basis of the following Hamiltonian difference equation:

xkþ1 ¼ Akxk þ ðg�2DkD
T
k � BkB

T
k Þkkþ1; ð3:1aÞ

kk ¼ HT
kHkxk þ A

T
k kkþ1 ð3:1bÞ
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with boundary conditions

x0 ¼ 0; kN ¼ QfxN : ð3:2Þ

The equivalent standard form of (3.2) is

I 0

0 Qf

" #
�x0
xN

( )
þ
0 0

0 �I

" #
k0
kN

( )
¼

0

0

( )
: ð3:3Þ

And the general form of boundary conditions of Hamiltonian difference system presented in
Ref. [2] is

�R#
0 0

0 R#
N

" #
�x0
xN

( )
þ
R0 0

0 RN

" #
k0
kN

( )
¼

0

0

( )
ð3:4Þ

in which the n 
 n matrices R0; R
#
0 ; RN ; R

#
N satisfy

rank
R0

R#
0

" #
¼ rank

RN

R#
N

" #
¼ n;

R0R
#T

0 ¼ R#
0R

T
0 ; RNR

#T

N ¼ R#
NR

T
N :

The general form of boundary condition (3.4) is for the use of theorems of Ref. [2] later.
The conjoined basis ðX;KÞ of Hamiltonian difference equation (3.1) is composed of the n 
 n

matrices sequence Xk and Kk (instead of the vectors xk; kk), which are solved from the matrix
form of Eq. (3.1), i.e.,

Xkþ1 ¼ AkXk þ ðg�2DkD
T
k � BkB

T
k ÞKkþ1; ð3:5aÞ

Kk ¼ HT
kHkXk þ ATk Kkþ1 ð3:5bÞ

and satisfying

rank
XTk

KT
k

" #
¼ n; ð3:6aÞ

XTk Kk ¼ KT
kXk: ð3:6bÞ

Let Pk ¼ KkX
�1
k ; Eq. (3.5) can be rewritten as

Pk ¼ HT
kHk þ ATkPkþ1ðXkX

�1
kþ1Þ

�1; ð3:7aÞ

I ¼ AkXkX
�1
kþ1 þ ðg�2DkD

T
k � BkB

T
k ÞPkþ1: ð3:7bÞ

Since condition (2.5) implies the non-singularity of Iþ ðBkB
T
k � g�2DkD

T
k ÞPkþ1 [1], Eqs. (3.7a)

and (3.7b) provides the recurrence equation

Pk ¼ HT
kHk þ ATkPkþ1½Iþ ðBkB

T
k � g�2DkD

T
k ÞPkþ1��1Ak: ð3:8Þ

It is obvious that Eq. (3.8) is the same as the Riccati equation (2.6).
Besides constructing the solution of the Riccati equation, the conjoined basis which satisfies the

boundary conditions, also plays a key role in the eigenvalue problem of the Hamiltonian
difference system. A number g�2 is said to be an eigenvalue of the Hamiltonian difference system
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(3.1) and (3.4) if (3.1) has a non-trivial solution ðxk; kkÞ which satisfies the general form of
boundary conditions (3.4), and the solution is called an eigenfunction corresponding to the
eigenvalue g�2: According to Ref. [2], if ðX;KÞ is a conjoined basis of Eq. (3.1) with

XN ¼ �RTN ; ð3:9aÞ

KN ¼ R#T

N ð3:9bÞ

then g�2 is an eigenvalue of (3.1) and (3.4) if and only if the n 
 n-matrix R#
0X0 þ R0K0 is singular.

Comparing the boundary conditions (3.3) and (3.4) gives

XN ¼ I; ð3:10aÞ

KN ¼ Qf ; ð3:10bÞ

R0 ¼ 0; ð3:11aÞ

R#
0 ¼ I: ð3:11bÞ

Therefore, the matrix R#
0X0 þ R0K0 ¼ X0 is singular if and only if g�2 is an eigenvalue of the

Hamiltonian difference system (3.1) and (3.3). In this case, the solution of Riccati equation tends
to infinity at k ¼ 0 since P0 ¼ K0X

�1
0 ; which means the nonexistence of solution at k ¼ 0 when g�2

is an eigenvalue. In addition, just as the finite escape phenomena of HN-Riccati differential
equations [1], when g�2 is larger than the first order eigenvalue g�21 ; the determinant of matrices
Mk; of the solution to the Riccati equation (2.6) may change abruptly from positive to negative in
½0;N � 1�: But for g�2 ¼ g�21 ; the solution matrix Mk tends to infinity at k ¼ 0 only. Since the
critical value g�2cr is the upper bound of g�2 which ensures the existence of positive definite solution
matrices to the Riccati difference equation (2.6), it is obvious that g�2cr ¼ g�21 ; as that in the case of
continuous-time HN optimization problems [4].
It is well known that eigenvalues of distributed systems are precisely stationary values of a

Rayleigh quotient [10]. As shown in Refs. [3,4], the eigenvalues of a linear Hamiltonian
differential system are stationary values of a generalized Rayleigh quotient with two kinds of
variables. It is also easy to show that the eigenvalues of the Hamiltonian difference system (3.1)
and (3.3) are stationary values of a generalized Rayleigh quotient of discrete form. The necessary
condition of Eq. (3.12) having a stationary value with non-trivial solution is equivalent to the
existence of a non-trivial solution to the Hamiltonian difference system (3.1) and (3.3).

Jgðx; kÞ ¼
XN�1

k¼0

�kTkþ1xkþ1 � 1
2
kTkþ1BkB

T
k kkþ1

�
þ 1

2
g�2kTkþ1DkD

T
k kkþ1 þ kTkþ1Akxk þ 1

2
xTkQkxk

�
þ 1

2
xTNQfxN : ð3:12Þ

It is easy to show that the variational principle

dJgðx; kÞ ¼ 0 ð3:13Þ
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leads to the generalized Rayleigh quotient

g�2j ¼ st
P1

P2
; j ¼ 1; 2; 3;y; ð3:14Þ

where

P1 ¼
XN�1

k¼0

kTkþ1xkþ1 � kTkþ1Akxk � 1
2
xTkQkxk þ 1

2
kTkþ1BkB

T
k kTkþ1

� �
� 1

2
xTNQfxN ; ð3:15aÞ

P2 ¼ 1
2

XN�1

k¼0

kTkþ1DkD
T
k kkþ1: ð3:15bÞ

The stationary values of the generalized Rayleigh quotient can be arranged as g�21 pg�22 p?; i.e.,
g1Xg2X?: With Legendre transformation, it will be shown in next section that the generalized
Rayleigh quotient stationary value (eigenvalue) problem (3.14) and (3.15) equals to a generalized
matrix eigenvalue problem.

3.2. Relation between the generalized Rayleigh quotient and the matrix eigenvalue

Considering the generalized matrix eigenvalue problem

ðK� rMÞd ¼ 0; ð3:16Þ

where the symmetric matrices KX0; M > 0; and the vector dARNnþn:

K ¼

Kaa0 Kab0

Kbb0 þ Kaa1 Kab1

Kbb1 þ Kaa2

symmetry & KabN

KbbN þQ�1
f

2
6666664

3
7777775
; ð3:17aÞ

M ¼

M0

M1

M2

&

MN

2
6666664

3
7777775
; ð3:17bÞ

d ¼ ½dT0 ; d
T
1 ; d

T
2 ;y; dTN �

T ð3:17cÞ

in which KaaiARn
n; KbbiARn
n are symmetric matrices, KTabi ¼ KbaiARn
n; diARn ði ¼
0; 1;y;NÞ: It is well known that eigenvalues rj of Eq. (3.16) are stationary values of the
Rayleigh quotient

rj ¼ st
dTKd

dTMd
; j ¼ 1; 2; 3;y : ð3:18Þ
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Considering the initial value of Eq. (2.1), let d0 ¼ 0; then Eq. (3.18) becomes

rj ¼ st

PN�1
k¼0 U0

k ðdk; dkþ1Þ þ 1
2
dTNQ

�1
f dNPN�1

k¼0
1
2
dTkþ1Mkþ1dkþ1

; ð3:19Þ

where

U0
k ðdk; dkþ1Þ ¼ 1

2
dTkKaakdk þ dTkþ1Kbakdk þ 1

2
dTkþ1Kbbkdkþ1: ð3:20Þ

The eigenvalue problem (3.16) is equivalent to the variational problem

d½12 d
TðK� rMÞd� ¼ 0; ð3:21Þ

i.e.,

d
XN�1

k¼0

U0
k ðdk; dkþ1Þ þ 1

2
dTNQ

�1
f dN �

XN�1

k¼0

1
2
rdTkþ1Mkþ1dkþ1

" #
¼ 0: ð3:22Þ

Denoting

Ukðdk; dkþ1Þ ¼ U0
k ðdk; dkþ1Þ � 1

2
rdTkþ1Mkþ1dkþ1; ð3:23Þ

the variational equation (3.22) can be transformed into the canonical form by discrete Legendre
transformation. Introducing

nk ¼
@Uk

@dk

¼ Kaakdk þ Kabkdkþ1; ð3:24aÞ

nkþ1 ¼ �
@Uk

@dkþ1
¼ �Kbbkdkþ1 þ rMkþ1dkþ1 � Kbakdk; ð3:24bÞ

then Ukðdk; dkþ1Þ can be expressed as

Ukðdk; dkþ1Þ ¼ 1
2
nTkdk � 1

2
nTkþ1dkþ1: ð3:25Þ

Let Hkðnk; dkþ1Þ denote the Hamiltonian function

Hkðnk; dkþ1Þ ¼ �dTkþ1nkþ1 � Ukðdk; dkþ1Þ: ð3:26Þ

Solving for nkþ1 and dk from Eq. (3.24) gives the dual equations

nkþ1 ¼ Fknk �Gkdkþ1; ð3:27aÞ

dk ¼ Eknk þ FTkdkþ1; ð3:27bÞ

where

Fk ¼ �KbakK
�1
aak; ð3:28aÞ

Ek ¼ K�1
aak; ð3:28bÞ

Gk ¼ Kbbk � KbakK
�1
aakKabk � rMkþ1 ¼ G

0
k � rMkþ1: ð3:28cÞ

Then the Hamiltonian function Hkðnk; dkþ1Þ is given as

Hkðnk; dkþ1Þ ¼ �1
2
nTkEknk � dTkþ1Fknk þ 1

2
dTkþ1Gkdkþ1: ð3:29Þ
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Let dN ¼ Qf nN ; the canonical form of the variational problem (3.22) is

d
XN�1

k¼0

ð�nTkþ1dkþ1 � Hkðnk; dkþ1ÞÞ þ 1
2
nTNQf nN

" #

¼ d
XN�1

k¼0

�dTkþ1nkþ1 þ dTkþ1Fknk þ 1
2 n

T
kEknk � 1

2 d
T
kþ1Gkdkþ1

� �
þ 1

2 n
T
NQf nN

" #
: ð3:30Þ

Therefore, the variational principle (3.19) can be transformed to be an equivalent generalized
Rayleigh quotient with two kinds of variables

rj ¼ st
F1

F2
; ð3:31Þ

where

F1 ¼
XN�1

k¼0

dTkþ1nkþ1 � dTkþ1Fknk � 1
2
nTkEknk þ 1

2
dTkþ1 G

0
kdkþ1

� �
� 1

2
nTNQf nN ; ð3:32aÞ

F2 ¼
XN�1

k¼0

1
2
dTkþ1Mkþ1dkþ1: ð3:32bÞ

Eqs. (3.31) and (3.14) have the identical formulation, and the algorithm for the search of the
fundamental eigenvalue of Eq. (3.31) can also be used for the computation of g�2cr : Since dARNnþn;
the dimension of the eigenvalue problem (3.16) may be very large. But the HN control problem
needs only the fundamental eigenvalue, so it is reasonable to consider a special algorithm for the
eigenvalue computation. As mentioned in Section 1, the W–W algorithm can only be applied to
the eigenvalue problem of one kind of variables, such as Eq. (3.16) or (3.18). For the eigenvalue
problems such as Eq. (3.31), the W–W algorithm should be extended [3,4].

4. Algorithm for critical value computation

4.1. The Wittrick–Williams algorithm

The W–W algorithm for the computation of eigenvalues is based on the eigenvalue count of a
specified interval [5]. Consider the eigenvalue problem

ðA� rBÞd ¼ 0; ð4:1Þ

where dARn; AT ¼ A; and BT ¼ B being positive definite. The number of eigenvalues, which are
less than the given value r#; is defined as the eigenvalue count of the eigenvalue problem (4.1). Let
Jðr#Þ denote this number, then

Jðr#Þ ¼ sfA� r#Bg; ð4:2Þ

where sfCg denotes the number of negative eigenvalues of the symmetric matrix C; note that
sfCg ¼ sfC�1g:
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If the matrices and vector are partitioned as

Aaa Aab

Aba Abb

" #
� r

Baa Bab

Bba Bbb

" #( )
da

db

" #
¼ 0; ð4:3Þ

where daARr; dbARn�r: And r constraints are given as da ¼ 0; then the eigenvalue problem is
reduced to be

ðAbb � rBbbÞdb ¼ 0: ð4:4Þ

Let J0ðr#Þ be the eigenvalue count of Eq. (4.4), and denote the reduced matrix as

Dðr#Þ ¼ Aaa � r#Baa � ðAab � r#BabÞðAbb � r#BbbÞ
�1ðAba � r#BbaÞ: ð4:5Þ

Then, the eigenvalue count of Eq. (4.1) is

Jðr#Þ ¼ J0ðr#Þ þ sfDðr#Þg: ð4:6Þ

For an eigenvalue problem of continuum, the degrees of freedom n-N; and DðrÞ becomes a
transcendental eigenvalue problem of r; for which Eq. (4.6) still holds [5,6].

4.2. The extended Wittrick–Williams algorithm

To simplify the expression, introducing the dynamic stiffness matrix ðA� rBÞ ¼ CðrÞ and the
eigenvalue problem is written as Cd ¼ 0:
Consider the eigenvalue problem of a segment of Eqs. (3.16) and (3.17)

Caa1 Cab1

Cba1 Caa2 þ Cbb1 Cab2

Cba2 Cbb2

2
64

3
75
dk�1

dk

dkþ1

2
64

3
75 ¼ 0; ð4:7Þ

where

Caa1 ¼ Kaak � rMaak; Caa2 ¼ Kaa;kþ1 � rMaa;kþ1;

Cab1 ¼ Kabk � rMabk; Cba1 ¼ Kbak � rMbak;

Cab2 ¼ Kab;kþ1 � rMab;kþ1; Cba2 ¼ Kba;kþ1 � rMba;kþ1;

Cbb1 ¼ Kbbk � rMbbk; Cbb2 ¼ Kbb;kþ1 � rMbb;kþ1:

All the eigenvalue problems in this section are expressed in terms of dynamic stiffness matrix.
According to Eqs. (3.28a)–(3.28c), let

Fi ¼ �CbaiC
�1
aai; i ¼ 1; 2; ð4:8aÞ

Ei ¼ C
�1
aai; ð4:8bÞ

Gi ¼ Cbbi � CbaiC
�1
aaiCabi: ð4:8cÞ

Then

Cbai ¼ �FiE
�1
i ; ð4:9aÞ
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Caai ¼ E�1i ; ð4:9bÞ

Cbbi ¼ Gi þ FiE
�1
i F

T
i ; ð4:9cÞ

where i ¼ 1; 2: Define for the segments k and k þ 1

nk ¼ F1nk�1 �G1dk; ð4:10aÞ

dk�1 ¼ E1nk�1 þ FT1 dk; ð4:10bÞ

nkþ1 ¼ F2nk �G2dkþ1; ð4:10cÞ

dk ¼ E2nk þ FT2 dkþ1 ð4:10dÞ

and for the combined segment

nkþ1 ¼ Fcnk�1 �Gcdkþ1; ð4:11aÞ

dk�1 ¼ Ecnk�1 þ FTc dkþ1: ð4:11bÞ

The following matrix merging equations are derived [7]:

Gc ¼ G2 þ F2ðG�1
1 þ E2Þ

�1FT2 ; ð4:12aÞ

Ec ¼ E1 þ FT1 ðE
�1
2 þG1Þ

�1F1; ð4:12bÞ

Fc ¼ F2ðIþG1E2Þ
�1F1: ð4:12cÞ

Let the constraint be denoted as dkþ1 ¼ 0; the eigenvalue problem (4.7) is reduced to

Caa1 Cab1

Cba1 Caa2 þ Cbb1

" #
dk�1

dk

" #
¼ 0: ð4:13Þ

Since the identity

Caa1 Cab1

Cba1 Cbb1 þ Caa2

" #
¼

I 0

Cba1C
�1
aa1 I

" #


Caa1 Cab1

0 Caa2 þ Cbb1 � Cba1C
�1
aa1Cab1

" #
ð4:14Þ

is valid for any given r#; the eigenvalue count of Eq. (4.13) is

JRcðr#Þ ¼ sfCaa2 þ Cbb1 � Cba1C
�1
aa1Cab1g þ sfCaa1g ¼ sfG1 þ E�12 g þ sfE�11 g: ð4:15Þ

Let JR1ðr#Þ ¼ sfKaa1g; JR2ðr#Þ ¼ sfKaa2g; then

JRcðr#Þ ¼ JR1ðr#Þ þ JR2ðr#Þ � sfE2g þ sfG1 þ E�12 g: ð4:16Þ

Executing this equation repeatedly with the merging equation (4.12) derives the eigenvalue count
of eigenvalue problem (3.31), which corresponds to the case of no boundary constraint.
It is easy to show that the eigenvalue count of the eigenvalue problem

Caa2 Cab2

Cba2 Cbb2 þQ�1
f

" #
dk

dkþ1

" #
¼ 0 ð4:17Þ
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is

JRQ2ðr#Þ ¼ sfQ�1
f þG2g þ sfCaa2g ¼ JR2ðr#Þ þ sfQ�1

f þG2g: ð4:18Þ

Now consider the following eigenvalue problem:

Caa1 Cab1

Cba1 Caa2 þ Cbb1 Cab2

Cba2 Cbb2 þQ�1
f

2
64

3
75
dk�1

dk

dkþ1

2
64

3
75 ¼ 0: ð4:19Þ

Let dkþ1 ¼ 0; the eigenvalue count of the following eigenvalue problem:

Caa1 Cab1

Cba1 Caa2 þ Cbb1

" #
dk�1

dk

" #
¼ 0; ð4:20Þ

is

J0ðr#Þ ¼ JRcðr#Þ: ð4:21Þ

According to Eq. (4.5), Dðr#Þ of this problem is

Dðr#Þ ¼ ðQ�1
f þ Cbb2Þ � 0 Cba2

� � Caa1 Cab1

Cba1 Cbb1 þ Caa2

" #�1
0

Cab2

" #
: ð4:22Þ

Using the matrix inversion lemma and Eq. (4.12a) gives

Dðr#Þ ¼ Q
�1
f þG2 þ F2ðIþG1E2Þ

�1G1F
T
2 ¼ Q�1

f þGc: ð4:23Þ

The final eigenvalue count equation of Eq. (4.19) is

JRQcðr#Þ ¼ JRcðr#Þ þ sfQ�1
f þGcg: ð4:24Þ

Executing this equation repeatedly with the interval merging Eq. (4.12) derives the eigenvalue
count of the eigenvalue problem (3.31).

4.3. Procedure of critical value computation

This section describes the computational procedure for time-invariant systems. The procedure
can be readily generalized to time-variant systems according to Section 4.2.

Finite horizon case

0. fSelect a suitable g�2# ; G ¼ BBT � g�2DDT; F ¼ A; E ¼ HTHg;
1. fE1 ¼ E; G1 ¼ G; F1 ¼ F; JR1 ¼ 0; E2 ¼ Qf ; G2 ¼ 0; F2 ¼ I; JR2 ¼ 0g;
2. ffor ðk ¼ 1; kpN � 1; k þþÞ

f
fCompute Ec;Gc;Fc and JRQc from (4.12a) to (4.12c) and (4.16)g
fE2 ¼ Ec; G2 ¼ Gc; F2 ¼ Fc; JRQ2 ¼ JRQcg
if ðJRQc > 0Þ
fg�2# is an upper bound ðubÞ of g�2cr ; jump out of loop

and restart from step 0 with lower g�2# g
g
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3. fNow g�2 is a sub-optimal parameter and is a lower bound ðlbÞ of g�2cr g
if ðub2lbÞ > e1ðe1 > 0Þ

fincrease g�2 and restart from step 0g
else

fbreakg.

The iteration for g�2# should be continued until the specified precision is reached, i.e. ðub2lbÞoe1
is achieved. The lower bound is taken as g�2cr : It should be noted that the sequence Ec generated by
the above procedure is just the sequence Mk; i.e., the solution of Eq. (2.6) or (2.12) [7]. As N
approaching infinity, M0 becomes the solution of the Riccati algebraic equation (2.14) of the
infinite-horizon case [1,8].

Infinite horizon case

1. fSelect a suitable g�2; Fc ¼ A; Gc ¼ BBT � g�2DDT; Ec ¼ HTH; JRc ¼ 0g;
2. fwhile ðjjFcjj > e2Þ ðe2 > 0; jjFcjj is the 2-norm of matrix FcÞg

f
fE1 ¼ E2 ¼ Ec; G1 ¼ G2 ¼ Gc; F1 ¼ F2 ¼ Fc; JR1 ¼ JR2 ¼ JRcg
fCompute Ec; Gc; Fc and JRc from Eqs. (4.12a) to (4.12c), (4.16)g
if ðJRc > 0Þ

fJump out of the loop; restart from step 1 with a lower g�2g
g

At the end of the iteration, Ec equals to the solution of the Riccati algebraic equation (2.14) of
the infinite horizon control problem, which is also the stable solution of the Riccati equation
(2.6) or (2.12).

5. Examples

Example 1. For the convenience of comparing, this example is taken from Ref. [11]. The data of a
discrete time system are

A ¼

1 0 �0:1 0

0 1 0 �0:1

0:033 �0:033 1 0

0:033 �0:033 �0:007 1

2
6664

3
7775; D ¼

0:01 0

0 0:01

0 0

0 0

2
6664

3
7775; B ¼

�0:004 0

0 �0:004

0:085 0

0 0:085

2
6664

3
7775;

H ¼
0:5 0:5 0 0

�2:113 2:113 0:375 0:375

" #
:

The critical values of the Riccati equation of finite horizon of different length are shown in Table
1. As N tends to infinity, the critical value of the associated Riccati difference equation
approaches the critical value of the Riccati algebraic equation of infinite horizon case. It should be
noted that even when N increases from 28 to 210; the amount of calculation increases just a
little.
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According to Table 1, the critical value is gcrE0:18884 when N is large enough. One can also
obtain the same value of gcr by using of the algorithm of the infinite horizon case. Furthermore,
the algorithm also gives the solution of the Riccati equation. When g ¼ 0:25 and N ¼ 28; the
solution of the Riccati difference equation at k ¼ 0 is

M ¼

73:198 �73:786 �42:565 32:735

96:810 39:473 �48:329

symmetry 38:820 �22:316

40:685

2
6664

3
7775;

which is also the solution of the algebraic Riccati equation. According to Eq. (2.7a), the state
feedback gain matrix is

K ¼ � BTP½Iþ ðBBT � g�2DDTÞM��1A

¼
3:226 �2:952 �3:086 1:739

�2:536 3:762 1:732 �3:228

" #
;

which is identical to the results in Ref. [11].

Example 2. The data of the second discrete time system are

A ¼

1:0 �32:37 0:0 32:2 0:0 0:7 0:0

�0:00014 1:0 10:0 0:0 2:0 0:0 0:3

�0:0111 �34:72 1:0 0:0 0:0 1:4 0:0

0:0 0:0 1:0 1:0 0:0 0:0 0:0

0:0 0:0 0:0 0:0 1:0 0:0 1:7

0:0 �1:0 0:1 3:2 0:0 1:0 0:0

0:0 0:1 �1:0 0:0 0:0 0:0 1:0

2
666666666664

3
777777777775
; B ¼

0:0

0:0

0:2

0:0005

0:1

0:02

0:01

2
666666666664

3
777777777775
; D ¼

0:0

�0:001064

�0:338

0:0

0:2

0:1

0:01

2
666666666664

3
777777777775
;

H ¼ diagð0:5; 0:5; 0:5; 1:0; 1:0; 1:0Þ:
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Table 1

Critical value gcr of Example 1

N 22 23 25 28 210

gcr 0.13803 0.15944 0.18870 0.18884 0.18884

Table 2

Critical value gcr of Example 2

N 22 23 24 25 26 27 28 29 210

gcr 8.5082 8.5748 8.6235 8.8429 17.100 20.217 20.237 20.237 20.237
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The critical values of the associated Riccati equation of different finite horizon are shown in
Table 2. As N tends to infinity, the critical value tends to a constant, which is also the critical
value of the associated Riccati algebraic equation.

6. Conclusions

The formulation of the extended W–W algorithm fit for the critical value computation of the
HN-Riccati difference equation of discrete-time HN control system is presented. Which is based
on the equivalence between g�2cr and the first order eigenvalue of the associated Hamiltonian
difference system. The generalized Rayleigh quotient and discrete Legendre transformation bridge
the linear Hamiltonian eigenvalue problem and the matrix eigenvalue problem. Based on this
relation, some key computational issues of discrete time HN filtering and HN measurement
feedback control problems can also be solved by the algorithm.
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